Design and Evaluation of Reliability-oriented Task
Re-Mapping in MPSoCs using Time-Series
Analysis of Intermittent faults

Siva Satyendra Sahoo
National University of Singapore
Department of Electrical and
Computer Engineering
Email: satyendra@u.nus.edu

Abstract—A large number of hardware faults are being caused
by an increasing number of manufacturing defects and physical
interactions during operation. This poses major challenges for
the design and testing of modern Multiprocessor System-on-
Chips (MPSoCs). Intermittent faults constitute a major part
of hardware faults and their fault rates can be used as an
indicator of the wear-out in a Processing Element (PE). We
propose a run-time task re-mapping method that uses this
information to improve the useful lifetime of MPSoCs. We also
propose a scenario-aware system-level fault injection technique
for intermittent faults to evaluate system-level design techniques
in MPSoCs. Our performance results conclusively show that our
strategy significantly scales on reliability metrics with respect
to number of PEs. Specifically, we show that our method can
achieve an increase in lifetime of up to 16% and tolerate up to
30% more faults than state-of-the-art techniques.

I. INTRODUCTION

The ubiquitous nature of computers in today’s workplace
and home environment shows the growing needs of computer
systems. As computer systems find increasing usage in systems
of growing complexity, the performance demands on the
systems keeps increasing as well. As a result, increasing
processing power needs to be built into a system. Technology
scaling and architecture innovations have led to the design of
denser and more complex systems with very high performance.
Reduced transistor size in deep sub-micron CMOS technology
has led to a dramatic increase in processor performance
and power density. Multiprocessor/Multicore systems take
advantage of this high density of transistors to implement
many processor cores of varying complexity and processing
capability on the same chip. This enables applications with a
large level of parallelism to execute very efficiently. However,
the increased power density and reduced transistor size have
introduced reliability issues [1]. With reduced transistor sizes,
the number of faults due to manufacturing defects such as
imperfect lithographic patterning, has increased. The rate of
manufacturing defects is expected to reach approximately 1000
defects/m? in the next few years [2]. Moreover, the increased
temperature due to higher power density increases the fre-
quency of occurrence of these faults. These circumstances
show the need for reliable design and testing of Multiprocessor
System-on-Chips (MPSoCs).

Reliability-aware task mapping has been the subject of much
research for improving the lifetime and availability of the sys-
tem. However, majority of this research has focused towards
using task mapping as a system-level fault tolerance technique

Akash Kumar
Technische Universitidt Dresden
Center for Advancing
Electronics Dresden(cfaed)
Email: akash.kumar@tu-dresden.de

Bharadwaj Veeravalli
National University of Singapore
Department of Electrical and
Computer Engineering
Email: elebv@nus.edu.sg

for permanent faults. While some of these techniques can be
also used for intermittent faults, the repairable nature of the
fault mechanisms for intermittent faults provides unique design
challenges and opportunities for improving the lifetime of
the system. In Section II we give a brief background about
intermittent faults, review some state-of-the-art techniques
for fault tolerance of intermittent faults and provide their
distinction from our current work.

Intermittent faults pose unique challenges to reliability
testing as well. Insufficient data on fault distributions and the
dependency of the fault mechanisms on random variations in
the operating conditions are major challenges for fault injec-
tion based reliability testing. Lastly, published literature does
not consider repairable nature of the intermittent faults and
this sets as a primary motivation for our work reported in this
paper. In our current work, we explore both aspects — design
and reliability testing — of fault tolerance for intermittent
faults. Our contributions can be listed as:

« We propose and implement a scenario-aware system-
level fault injection technique for intermittent faults in
MPSoCs. In Section III, we give an overview of the fault-
injection based simulation and describe our proposed
technique to simulate intermittent faults.

« We propose and implement a runtime task mapping
method that uses the intermittent fault rate as an indicator
of wear-out in the units to improve the useful lifetime of
MPSoCs. The system modeling and algorithm for this
technique is described in detail in Section IV.

We performed fault-injection based tests to quantify the
effectiveness of our proposed task mapping method and com-
pare the results with state-of-the-art methods. In Section V we
describe the simulation setup, settings and metrics used for this
evaluation and the results observed. Finally, in Section VI, we
conclude the paper by summarizing the results and specifying
the scope for future work.

II. LITERATURE SURVEY
A. Intermittent Faults

A fault is an erroneous state of software or hardware
resulting from failures of its components. Faults can occur
due to design/manufacturing defects (developmental faults),
wear/fatigue (physical faults), or external disturbances (in-
teraction faults). Based on their frequency and persistence,
hardware faults can be classified into — Transient faults,

Intermittent faults and Permanent faults [1]. Intermittent faults
are those that occur non-deterministically at the same location.
Recent studies in [3], [4] show that intermittent faults are
prevalent in commodity processors.

o Causes: Device wear-out is the major cause of intermit-

tent faults. Solid-state devices tend to degrade with time
and stress. Transistor scaling and higher temperatures
make the devices more susceptible and also causes the
acceleration in the occurrence of these faults [5]. Recent
surveys [3] also suggest that the fault rates in processors
correlate with the number of cycles executed by the
processor. Fault mechanisms that are activated by wear-
out, resulting in the faults are — Gate-oxide breakdown,
Negative Bias Temperature Instability (NBTI), Hot Car-
rier Injection (HCI) and Electromigration (EM).
In HCI, carriers, as they are accelerated along the channel,
can become energetic enough that, through scattering
and/or impact ionization, they can be injected into the
gate-oxide causing interface-state generation. NBTT is the
leading reliability concern for current technology nodes.
NBTI causes a shift in the p-channel threshold voltage
and a decrease in the mobility of the inversion channel.
More than 40% of faults due to NBTI and HCI are
reversible and are manifested as intermittent faults [6].
Gate-oxide breakdown is defined as the time when a
cluster of connected bonds beginning from a seed at one
interface of the gate oxide reaches the opposite interface.
These Time Dependent Dielectric Breakdowns (TDDB)
first manifest as intermittent errors (as Soft Dielectric
Breakdown (SDB)) and later progress to Hard Dielectric
Breakdowns (HDB) under continued stress conditions.
EM is the gradual displacement of metal atoms in a
semiconductor. Two EM failure mechanisms occur due
to the asymmetry in the ion flow — open circuits and
short circuits.

« Effects: Intermittent faults may manifest as oxide fail-
ures, which starts with tunnel injection of electrons. This
increases the leakage current and may eventually lead to
permanent breakdown over time. Similarly, faults in the
interconnects (like EM voids) may cause higher resistance
and propagation delays, resulting in timing failures inter-
mittently [7]. So, we can conclude that intermittent faults
can eventually lead to permanent faults under continued
stress and can be used as an indicator of the wear-out in
the unit.

B. Fault Tolerant Task Mapping

Task mapping of application tasks on MPSoCs involves
assignment and ordering of the tasks and their communications
on the platform resources in view of some optimization
criteria, such as Execution time, Mapping time, Throughput,
Resource utilization, Energy consumption and Reliability. A
survey of various task mapping methodologies, both Design-
time and Run-time, based on different optimization goals
is presented in [8]. Majority of the research for reliability-
aware task mapping in MPSoCs has been towards adapting
to permanent faults. Wells et al. explored techniques such
as pausing execution on a faulty core, remapping tasks on
spare cores and virtualization to adapt to intermittent faults

[9]. Rashid et al. evaluate the impact of different intermittent
error recovery scenarios on the MPSoC performance in [5].
Both [5], [9] treat the Processor Elements (PEs) of an MPSoC
as either live or dead units at a particular instant. While
this approach is suitable for permanent faults, the unique
characteristics of intermittent faults show that it fails to model
the effects of intermittent faults accurately.

Das et al. proposed a technique to model the availability
of MPSoCs with intermittent and repairable device defects
[10]. They provide a design time optimization technique to
improve task communication energy. However, intermittent
faults are highly susceptible to variations in temperature,
operating environment and aging effects. Hence, a runtime
approach to assess the health of the PEs can provide a better
estimate of the state of the system. Moreover, design-time
optimization fails to account for the varying number and type
of applications in the system during its operation. In [11],
Duque et al. proposed a fault tolerant approach to model
core reliability at runtime and allocate resources accordingly.
However the following shortcomings in [11] are noteworthy:

o The core reliability modeling suffers from short-term
memory. A PE with a history of a large number of
faults can get an improved ranking with a relatively small
number of fault-free operations. This problem is more
evident in the presence of spare cores in the MPSoC,
where a faulty processor unit can get similar rank to a
relatively lesser used spare unit.

e The simulations for the evaluation of the proposed
method were done with a decreasing fault rate. The wear-
out region of operating lifetime shows an increasing fault
rate and evaluating the system performance in the wear-
out region will give a better estimate of the lifetime of
the system.

In our current work, we try to overcome the problem of
short-term memory by performing a trend analysis of the faults
over the lifetime of the system. We compared our method with
[11] by performing simulations with increasing fault rate and
observe up to 16% improvement in the lifetime of the MPSoC.

III. SYSTEM LEVEL FAULT INJECTION

Fault injection is used to evaluate the dependability of
the system. It involves inserting faults into the system and
monitoring the system response in order to assess the fault
tolerance of the system. In simulation-based fault injection
both the target system and the possible hardware faults are
modeled and simulated by a software program. One of the
drawbacks of this technique is the possible lack of accuracy
in the fault model. Usually, a random fault-injection model
is used for reliability evaluation of MPSoC based systems.
This approach is sufficient for permanent faults, where the
processing units can attain only one of the two states—dead
or alive, and for transient faults, where there is no underlying
pattern to the fault mechanisms. However, a more appropriate
model for intermittent faults should consider the following
conclusions drawn from Section II:

« A PE with one or more intermittent faults has higher
chances of having another.

Eff_exec_t; = Total_exec, — o X Total_rest;
Estimated_FIT; = func(Initial _FIT;, Eff_exec_t;, Fault model)
Norm_FIT; = Estimated_FIT; -~ maxz(Estimated_FIT;s)
PE_fi_idx; = Norm_FIT; x PE_fault_cnt,

Fig. 1: Steps to calculate PE_fi_idx;

o The chances of a PE facing an intermittent fault are
proportional to the number of faults that have already
occurred in it [3].

« Continued stress conditions on a PE increase its chances
of facing another intermittent fault.

e Some fault mechanisms are repairable and might show
some amount of recovery with a lesser workload [6].

To this end, we propose a scenario-aware fault injection tech-
nique for system-level, simulation-based evaluation of MP-
SoCs. This involves steps as presented in Algorithm 1. First,
we compute the expected time to the next fault (Next_ttf).
This is done based on the input Fault distribution model and
its parameters. Frequently used models for fault injection in-
clude — Weibull, Exponential and Log-Normal. The appropriate
model to use is selected based on the fault-mechanism being
evaluated. Next, we model the fault likelihood of each PE
in the MPSoC based on the current mapping data and the
evaluated Next_ttf. This information is used to compute
the total execution time (Total_exec;), and the total resting
time (Total_rest;) for each of the PEs in use. The estimated
fault rate (Estimated_FIT;) is calculated as a function of
the effective execution time (Eff_exec_t;), the initial fault
rate (Inittal_FIT;) of the PE and the fault model as shown in
Fig. 1. Initial_FIT specifies the built-in reliability of the PE.
Value of « can be varied to account for the repairable nature of
the fault mechanism under consideration. In [6], Ershov et al.
have reported that NBTI degradation contains both permanent
and reversible components. Also, the relative magnitude of the
reversible part with respect to the permanent part is very less.
Similar behavior is also observed for hot-carrier degradation.
So, the value of o can be used to reflect the fault mechanism
under consideration. Only positive values should be allowed
for Ef f_exec_t;. These estimated values are used along with
the PE’s intermittent fault count (PE_fault_cnt;) to compute
the PE_fi_idx;. The computed PE_fi_idx; is used to assign
fault probabilities to each PE. Thus, we obtain a non-uniform
probability distribution for the fault-injection. The faulty node,
PE_Faulty is then selected randomly based on the assigned
probability values. The randomness is used to account for
different operating conditions and PVT variations.

Algorithm 1 Scenario-aware Fault Injection

Require: current mapping data, fault distribution model
Ensure: time to next fault, PE to inject fault

1: compute time to next fault: Next_tt f

2: for each PE in mapping i € 1 : PE_count do
3: if PE; in use then

4: compute PE_fi_idx; based on current mapping
5: else

6: set PE_fi_idz; to 0

7: end if

8: end for

9: for each PE in mapping i € 1 : PE_count do

10: compute PE_fault_prob; based on PE_fi_idx;

11: end for

12: select PE_F aulty randomly based on PE_fault_prob;s

Thus it is clear that the proposed fault injection technique
enables the user to fine-tune the effect of rest cycles and
execution cycles. By considering the initial fault rate of each
core, this technique enables us to evaluate MPSoCs with PEs
of varying built-in reliability.

IV. RELIABILITY-AWARE RUNTIME TASK MAPPING

Reliability-aware task mapping is a widely used fault-
tolerance technique for improving the lifetime of MPSoCs.
It involves reconfiguring the task allocation in the MPSoC
in the event of a fault occurring in one or more PEs. This
re-mapping strategy can be formulated either during design
time or during the runtime of the system. Design time re-
mapping is usually used for static workloads, while runtime
re-mapping is more suitable for dynamic workloads. The
mapping strategy also varies with the kind of fault occurring
in the system. For a permanent faults, the PEs in the MPSoC
can be viewed as either functional or dead, and hence a
suitable methodology can be adopted. However, intermittent
faults exhibit behavior, as stated in Section II. The PEs can still
be seen as either functional or non-functional at that particular
instant. The following properties of intermittent faults needs to
be considered during design of any fault tolerance technique:

1) The fault mechanisms of intermittent faults are partially

reversible.

2) Intermittent faults lead to permanent faults under con-

tinued stress conditions.

Thus, it is clear that we need a different approach with
respect to intermittent faults. To this end, the intermittent fault
rate of each PE in the MPSoC can be used as an indicator of
the level of wear in the PE at that instant. This information can
be used to re-map the task allocation in the MPSoC in a way
that reduces the likelihood of further faults occurring in the
PE. This can lead to extended lifetime of each PE and hence
result in increased lifetime of the system. An implementation
of this approach was proposed in [11]. However, as discussed
in Section II, this method and the evaluation methodology
has some shortcomings. We propose a method of task re-
mapping that offers improved reliability and scales very well
with respect to the number of available PEs.

A. Estimating PE health:

The MPSoC with a number of PEs can be seen as a system
with repairable components. The component repair can be by —
Self-repair, stopping execution on the component, or External
repair, by some dedicated hardware module in the system. The
faults occurring in the components can be viewed as discrete
events occurring randomly in time. Such phenomenon cannot
be truly represented by a single continuous distribution func-
tion. These situations are stochastic point processes and can be
analyzed using event series statistics [12]. Non-Homogeneous
Poisson Process (NHPP) represent point processes in which
the rate of occurrence changes with time.

A NHPP describes the sequence of random variables that
are neither independently nor identically distributed. The oc-
currence of intermittent faults, with characteristics such as
varying rates of occurrence with workload and wear and the
susceptibility to random PVT variations, can be analyzed as
NHPP. We use the centroid test to analyze the trend of faults

occurring in the PEs, and use the resulting value (U_val) as the
indicator of the health of the system. The computation of the
U_wal in terms of the arrival times of the faults x1, o,7,
is shown in (1) and Fig. 2 [12].

Szi/n—xz0/2
z04/1/(12n)

U_val = (€8]

A higher value of U_val indicates a faster increasing fault
rate in the PE. The arrival time of the current fault is denoted
by xp.

B. Application modeling:

An application and its constituent tasks can be represented
by Synchronous Data Flow Graphs (SDFG). The dependence
of the tasks of the application is represented in the SDFG by
the number of tokens along the edges of the graph. We use
the method proposed in [13] to estimate the execution time of
each task in one cycle of execution. This information is used
to estimate the total execution time on the PE to which each
task is allocated. Fig. 3 presents the estimation for one such
application with the execution trace shown in Fig. 4. A sorted
array of tasks, T'ask_list , based on their estimated execution
time, is used for the mapping.

C. System Description:

The system under test is assumed to be a NoC based MPSoC
with a mesh architecture, similar to the one shown in Fig. 5.
We assume uninterrupted communication between the PEs.Our
work does not concern fault detection, diagnosis and repair.
Also,we consider situations in which only one fault occurs in
the system at any instant.

The block diagram to implement the proposed task mapping
technique is presented in Fig. 5. The Task_Allocation_unit
keeps track of the PE and running application’s state. The val-
ues that define the states of the application, PE and the current
mapping is shown in Table I. The Fault_Management_unit

Arrival times

Fig. 2: Arrival time of faults (x;). The faults happen at non-
periodic time intervals. The most recent fault is indicated by
Zo.

TABLE I: System State Variables
PE PE_id, flag_perm_fault, flag_current_fault
Task Task_id, execution_time

Mapping | PE_id;, Task_id;, U_val;, cumulative_ttf;

Execution time

Task

from SDFG from execution trace

28800
2400
2400
7200
2400

36000

28800
14400
14400
43200
14400
36000

- e a6 o

Fig. 3: SDFG of JPEG application. The table shows the
execution time of each node and the estimated execution time
of each node for one execution cycle. This is estimated form
the execution trace as shown in Fig. 4

b/b/b/biblb
clclclclclc
d I d T d d I d ! d
e e e e e e

5
rd

<— (atb+c) (dx6)

) —>
time 2> €+

Fig. 4: Execution trace for one execution cycle of SDFG shown
in Fig. 3

is a hardware module that concerns the detection, diagnosis
and repair of hardware faults in the MPSoC. The events that
can activate the T'ask_Allocation_unit are: Detection of a
permanent or intermittent fault, addition or removal of an
application and repair of a faulty core. The response of the
Task_Allocation_unit in the event of the occurrence of any
of these is presented in Algorithm 2. When the sorted and
updated lists — Available_PFEs and Task_list are available,
the tasks from T'ask_list are mapped sequentially onto the
PEs in the Available_PFE's list.

V. EXPERIMENTS AND RESULTS
A. Experiments

We conducted performance evaluation studies to estimate
the extended lifetime of the system. The setup and metrics

Algorithm 2 Runtime Task-remapping

1: if intermittent fault detected on PE; then
2: remove PE; from Available_PE's list
3: add earlier intermittently faulted PE to Available_PEs
4: sort Available_PEs list based on U_val
5: map tasks from sorted T'ask_list
6: set flag_current_fault for PE;
7: compute U_val for PE;ault
8: end if

9: if faulty PE PE; is repaired then

10: add PE; to Available_PEs list

11: set U_val; and cumulative_ttf;

12: end if

13: if permanent fault is detected on PE; then

14: remove PFE; from Available_PFEs list

15: re-map tasks from sorted T'ask_list
16: set flag_perm_fault;
17: end if

18: if change in application then

19: create sorted T'ask_list with changed tasks

20: map tasks from T'ask_list on Available_PE's
21: end if

(MPSoC

TASK
ALLOCATION
UNIT

FAULT
MANAGEMENT
UNIT

Relative values

0.28 T

1.34

1.31

1.22

-
RAND3 H263_dec H263_enc JPEG RANDS
MTTC MTTC Faults tolerated Faults tolerated
Fig. 5: System Block Diagram B roposea) 1 0py) B roposeay ™ ppy)

used for the comparison are discussed below. Fig. 6: Reliability comparison with [11]

« Experiment Setup: Our evaluation involves— Fault In-

Jection, Task Re-mapping and Data collection. The fault-
injection was done as described in Section III. However,
random fault injection was also used to verify the results.
Current microprocessors are expected to have a mean-
time-to-failure (MTTF) of 5 years. This translates to a
fault rate of 22,831FIT. We use a starting fault rate
of 2 x 107 FIT, an acceleration factor of about 103, to
limit the simulation time while still being able to generate
a large number of fault scenarios. We use the Weibull
model, with fault rate as shown in (2), for the fault
distribution.

A(t):ﬁ(f)‘“ @
n\n

The shape parameter 5 was set to 2 to simulate the wear-
out region of the model. For each experiment, results
data was collected from 10, 000 simulations and the mean
values were used for comparison.

Metrics for Comparison: To compute the reliability
of the MPSoC, we consider the relevant metric mean-
time-to-crash (MTTC) [14]. We compute the MTTC as
the mean time till there are insufficient PEs left in the
system. With increasing fault rate, the PEs go into a
state of permanent fault. The PEs are assumed to go into
a permanent fault state when the intermittent fault rate
exceeds some threshold value,as highlighted in [4]. We
use a value of 4 faults in 24 hours as the threshold. We
used the number of faults tolerated (NFT) by the system
as another measure of the efficiency of the re-mapping
technique.

Comparison points: We implemented our proposed
method as well as the one proposed in [11] (DDY)
and another method, referred to as BASE, that does not
consider the wearing of the PEs. Experiments were done
based on all three methods and were evaluated on three
benchmark applications and 2 random SDFGs. These
experiments were carried out for MPSoCs with 6,9, 12
and 16 PEs.

B. Results

« Reliability: Table II shows the percentage increase in

MTTC and number of faults tolerated by the system over
the BASE method. The numbers of tasks in each applica-
tion is shown in parenthesis. Fig. 6 presents the relative
values of the reliability metrics, when compared with [11]
for an MPSoC with 16 PEs. It can be observed from the
results, that our proposed technique and that by Duque et
al. show improvement in the estimated lifetime over the
BASE method. However, with increasing number of spare
PEs, our proposed method shows a better improvement in
all experiments. Fig. 7 shows the percentage improvement
in reliability over BASE method of JPEG with increasing
number of PEs. The BASE method does not consider the
history of faults of the PEs while re-mapping. This might
result in PEs with intermittent faults getting allocated
more tasks continuously. This results in PEs getting into
permanent faults early. The DDY method proposed in
[11] suffers from short-term memory as discussed in
Section II. Any PE, with some-level of wear, can get
an equal ranking with a PE that has not shown any
signs wear, by a small number of fault-free operations.
This may result in higher workloads being allocated to
defective PEs and can lead to re-activation of the fault
mechanism. Our approach will require a relatively large
number of decreasing fault rates to improve its ranking
and will therefore be more immune to random faults.

Fault Injection: Table III presents the increase in reli-
ability by using our proposed mapping technique over
that proposed in [11] for 16 PEs. We present the re-
sults for both-random fault-injection and scenario-based
fault-injection method. Random fault injection assumes
a uniform distribution of fault probability for all PEs.
The scenario-based fault-injection technique considers the
execution time and number of faults that have already
occurred in the PE, while predicting faults. This provides
a better model for simulating intermittent faults. Our
proposed method performs better than DDY for both the

30 |- 1
B
§ —e— Proposed
§ 20l ——DDY [11] |
S
@)
F
—~
=
10 - 1
| | | | | |

10 15 20 25 30 35
Number of PEs

Fig. 7: Percentage increase in MTTC over BASE method for
JPEG

fault-injection models, and we get a higher increase in
MTTC when we try to simulate intermittent faults.

o Computation: We have evaluated the reliability achieved
by three different methods of task re-mapping. The
BASE method does not involve any computations for re-
mapping. In [11], a method for PE’s health estimation
is proposed which is easy to realize but does not scale
well as the number of available PEs increases. In contrast,
our proposed method offers this scaling as the number of
spare PEs increases. It may be noted that the computa-
tions do not affect the re-mapping time, as the faulty PE’s
reliability index (U_wval) is updated after re-mapping. The
sorting of PEs based on their U_wval is also done after
the re-mapping is completed for the current intermittent
fault. However, depending on the platform in use, relevant
approximations can be used in the computation of U_val.

VI. CONCLUSIONS

In our current work, we explored the application of time-
series analysis to estimate the health of the PEs in a MPSoC.

TABLE II: Percentage Increase in Reliabilty data over BASE
Method

MTTC NFT
Application | Number of PEs (% increase) (% increase)
Proposed | DDY [11] | Proposed | DDY [11]
6 2.68 0.73 5.69 1.54
RAND3(3) 9 8.47 1.65 17.84 3438
12 14.44 2.40 30.26 5.03
16 20.84 3.52 43.46 7.33
6 3.27 1.50 6.90 3.17
9 12.94 3.26 27.12 6.82
H263_dec(d) 2 2097 522 1361 10.81
16 24.76 7.89 51.94 16.15
6 3.85 5.14 8.10 10.83
9 16.59 5.85 34.94 12.31
3

H263_enc(3) 2 23.68 935 4941 1921
16 26.63 14.20 57.07 28.91
9 14.06 5.59 28.63 11.33
JPEG(6) 12 22.78 10.81 47.21 21.86
16 23.49 14.44 49.87 28.48
12 18.56 10.57 37.60 20.67
RANDS(®) 16 25.44 15.88 55.24 31.56

TABLE III: Increase in Reliability Over [11] under different

Fault Injection(FI) Method

MTTC NFT
Application (% increase) (% increase)
Random FI | Proposed FI | Random FI | Proposed FI

RAND3 7.07 16.73 14.54 33.67
H263_dec 9.50 15.64 18.32 30.81
H263_enc 5.05 10.89 9.43 21.84
JPEG 2.04 7.90 441 16.65
RANDS 2.49 8.25 5.40 18.00

This information was used to reduce the likelihood of wear-
out based faults, thereby increasing the lifetime of the system.
We compared our method with one recent work and observed
an increase in lifetime of the MPSoC. All the results were
obtained from fault-injection based simulations. The accuracy
of such experiments is highly dependent on the accuracy of the
fault model and the system model. To this end, we proposed
a system-level fault-injection technique for intermittent faults
that takes the characteristics of such faults into consideration.
An interesting extension following this work is in using the
proposed technique along with ones that use thermal and
layout information to provide better fault-injection. Another
plausible extension is in considering faults occurring in the
MPSoC due to wearing of the communication links.

REFERENCES

[1] C. Constantinescu, “Trends and challenges in vlsi circuit reliability,”
IEEE micro, 2003.

[2] ITRS, “International technology roadmap for semiconductors.” [Online].
Available: http://www.itrs.net

[3] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, cells and
platters: an empirical analysisof hardware failures on a million consumer
pes,” in Proceedings of the sixth conference on Computer systems.
ACM, 2011.

[4] C. Constantinescu, “Intermittent faults and effects on reliability of

integrated circuits,” in Reliability and Maintainability Symposium, 2008.

RAMS 2008. Annual. 1EEE, 2008.

L. Rashid, K. Pattabiraman, and S. Gopalakrishnan, “Intermittent hard-

ware errors recovery: Modeling and evaluation,” in Quantitative Evalua-

tion of Systems (QEST), 2012 Ninth International Conference on. 1EEE,

2012.

[6] M. Ershov, S. Saxena, H. Karbasi, S. Winters, S. Minehane, J. Bab-
cock, R. Lindley, P. Clifton, M. Redford, and A. Shibkov, “Dynamic
recovery of negative bias temperature instability in p-type metal-oxide—
semiconductor field-effect transistors,” Applied physics letters, 2003.

[7]1 C. Constantinescu, “Impact of intermittent faults on nanocomputing
devices,” in DSN 2007 Workshop on Dependable and Secure Nanocom-
puting, 2007.

[8] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: survey of current and emerging trends,” in
Proceedings of the 50th Annual Design Automation Conference. ACM,
2013.

[9] P. M. Wells, K. Chakraborty, and G. S. Sohi, “Adapting to intermittent
faults in multicore systems,” ACM SIGOPS Operating Systems Review,
2008.

[10] A. Das, A. Kumar, and B. Veeravalli, “Communication and migration
energy aware design space exploration for multicore systems with inter-
mittent faults,” in Proceedings of the Conference on Design, Automation
and Test in Europe. EDA Consortium, 2013.

[11] L. A. R. Duque, J. M. M. Diaz, and C. Yang, “Improving mpsoc relia-
bility through adapting runtime task schedule based on time-correlated
fault behavior,” in Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition. EDA Consortium, 2015.

[12] P.P. O’Connor and A. Kleyner, Practical Reliability Engineering, 5th ed.
Wiley Publishing, 2012.

[13] A. Das, A. K. Singh, and A. Kumar, “Execution trace—driven energy-
reliability optimization for multimedia mpsocs,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), 2015.

[14] W. Dweik, M. Annavaram, and M. Dubois, “Reliability-aware excep-
tions: Tolerating intermittent faults in microprocessor array structures,”
in Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2014. IEEE, 2014.

[5

=

